Recursive definitions are familiar in mathematics. For instance, the function f defined by

$$
\begin{aligned}
f(0) & =1 \\
f(1) & =1 \\
f(x+2) & =f(x+1)+f(x)
\end{aligned}
$$

gives the Fibonacci sequence: $1,1,2,3,5,8,13, \ldots$ (The study of difference equations concerns the problem of going from recursive definitions to algebraic definitions. The Fibonacci sequence is give by the algebraic definition

$$
\left.f(x)=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{x+1}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{x+1} .\right)
$$

The primitive recursive functions are an example of a broad and interesting class of functions that cam be obtained by such a formal characterization.

Definition The class of primitive recursive functions is the smallest class \mathcal{C} (i.e., intersection of all classes \mathcal{C}) of functions such that
i. All constant functions, $\lambda x_{1} x_{2} \cdots x_{k}[m]$ are in $\mathcal{C}, 1 \leq k, 0 \leq m$;
ii. The successor function, $\lambda x[x+1]$, is in \mathcal{C};
iii. All identity functions, $\lambda x_{1} \cdots x_{k}\left[x_{i}\right]$ are in $\mathcal{C}, 1 \leq i \leq k$;
iv. If f is a function of k variables in \mathcal{C}, and $g_{1}, g_{2}, \ldots, g_{k}$ are (each) functions of m variables in \mathcal{C}, then the function $\lambda x_{1} \cdots x_{m}\left[f\left(g_{1}\left(x_{1}, \ldots, x_{m}\right)\right.\right.$, $\left.\left.\ldots, g_{k}\left(x_{1}, \ldots, x_{m}\right)\right)\right]$ is in $\mathcal{C}, 1 \leq k, m$;
v. If h is a function of $k+1$ variables in \mathcal{C}, and g is a function of $k-1$ variables in \mathcal{C}, then the unique function f of k variables satisfying

$$
\begin{aligned}
& f\left(0, x_{2}, \ldots, x_{k}\right)=g\left(x_{2}, \ldots, x_{k}\right) \\
& f\left(y+1, x_{2}, \ldots, x_{k}\right)=h\left(y, f\left(y, x_{2}, \ldots, x_{k}\right), x_{2}, \ldots, x_{k}\right)
\end{aligned}
$$

is in $\mathcal{C}, 1 \leq k$. (For (v), "function of zero variables in \mathcal{C} " is taken to mean a fixed integer.)

