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1 Introduction

In 1985-86 the Notices of the American Mathematical Society ran a series, authored by Richard Palais1, on
using a computer to produce technical text. As part of that series, they reprinted Technical Wordprocessors

for the IBM PC and Compatibles: A report by the PC Technical Group of the IBM PC Users Group of the

Boston Computer Society.2 It said, “TEX systems are in a class by themselves. The TEX user has power and
flexibility unmatched by any conventional word processor.”

In 1986, I was fresh from struggling with the text of my Ph.D. thesis, and so I read the entire series with
interest. It convinced me that a TEX system is the way to go. Much of it involves tests of products that no
longer exist and so it would not make sense to reproduce the entire report. But the committee’s selection of
benchmarks remains wonderful: they covers a wide range of tasks in the production of technical material,
and provide a fair test for systems that a person might consider. And, they show that – especially in quality
of output – there is still no competitor for TEX.

2 Methodology

Below, each page contains one benchmark. I have done each in the way that a moderately knowlegeable
TEX user would, using only those facilities discussed in LATEX: a Document Preparation System, and in The

LATEX Companion and The LATEX Graphics Companion. I have stayed away from any low-level programming
or wizardry. I believe that this shows what a reasonable person can accomplish, with reasonable effort, with
a TEX system.

Note. I have corrected several small typos in the original benchmarks.

3 To do . . .

This document is not yet complete. In particular, because I don’t know any Chemistry, someone else should
do the chemical diagrams.

1Mathematical Text Processing, Notices of the Amer. Math. Soc, vol. 33, no. 1, Jan. 1986, p. 3–7.
2Authors: Avram Tetewsky, Jack Pearson. TEX reviewers: A.G.W Cameron, Jack Pearson. Reprinted in Notices of the

Amer. Math. Soc, vol. 33, no. 1, Jan. 1986, p. 8–37.
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Benchmark 1: L. Tsang and J. A. Kong, Journal of Applied Physics, 51(7), July 1980, page 3471, equa-
tion 110.
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Benchmark 2: Athanasios Papoulis, Probability, Random Variables, and Stochastic Processes, second
edition, McGraw-Hill, 1984, page 17.

Unions and Intersections The sum or union of two sets A and B is a set whose elements are all elements of
A or B or of both (Fig. 2-3). This set will be written in the form

A + B or A ∪ B.

The above operation is commutative and associative:

A + B = B + A (A + B) + C = A + (B + C).

We note that, if B ⊂ A then A + B = A. From this it follows that

A + A = A A + ∅ = A J + A = J .

The product or intersection of two sets A and B is a set consisting of all elements that are common to the
two sets A and B (Fig. 2-3). This set is written in the form

AB or A ∩ B.
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Benchmark 3: Richard P. Feynman, The Feynman Lectures on Physics, Addison-Wesley Publishing Co.,
1965, Vol. 3, page 20-12, Table 20-1.

Table 1: 20-1

Physical Quantity Operator Coordinate Form
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In this list, we have introduced the symbol Px for the algebraic operator (h̄/i)∂/∂x:

Px = h̄
i

∂
∂x
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Benchmark 4: William L. Brigan, Modern Control Theory, QPI Quantum Press Inc., Prentice Hall, 1984,
page 240, Figure 9.11.
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Benchmark 5: Marsden, J.E., Elementary Classical Analysis, W.H. Freeman and Co., 1974, page 234,
proof of Theorem 2.

Proof. Define the function G : A ⊂ R
n × R

m → R
n × R

m by G(x, y) = (x, F (x, y)). Since F is of class Cp

and the identity matrix is of class C∞, it follows that G is of class Cp. The matris of partial derivatives of
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Benchmark 6: Henry, Allen F., Nuclear Reactor Analysis, MIT Press, Cambridge, Mass., 1982, page 495,
subequations 4 and 5.
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n
kl] ≡

1

2
(hn−1 + hn)

∫ R

0

2πr dr[ρn∗

k (r)]
d

dr
[Ψn

l (r)],

[Dn
r,kl]

−1 ≡

∫ R

0

2πr dr

∫ zn+ 1

2
hn

zn−
1

2
hn−1

[ρn∗

k (r)][D−1(r, z)][ρn
l (r)],

7



Benchmark 7: Guendelman and Radulovic, “Infrared Divergence in Three-Dimensional Gauge Theories”
Journal of the American Physical Society, 30, No 6, 15 Sept 1984, page 1347, Figure 13.

i∆

p′ = 0p
− epµ

µ ν

=

µ ν

2ie2gµν

8



Benchmark 8: Hendrickson, Cram, and Hammond, Organic Chemistry, McGraw-Hill, 1970, page 1078,
Figure 27-6, Ajmaline and Quinine.

Note: This benchmark is not finished. If you know how to do it; I’d appreciate the help, very much.
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Benchmark 9: The following expressions.

fZ(Z) fy(y) · eαβ
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Benchmark 10: Place benchmark examples 1 through 9 in one file. See if pagination works and if the
system has enough memory or stack to do the work.

In a sense, this document witnesses the success that this system has with this benchmark. A person who
wants to try this test with more than one benchmark on a page can get the source to this document and
adjust the preamble to eliminate the \newpage in the \newtest definition.
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